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Mutual Eigenspace Disturbance (MED)

We quantify incompatibility of two observables A and B given by the projector

sets P = (Pi)
kA
i=1 and Q = (Qj)

kB
j=1 acting in a d-dimensional Hilbert space by

Mutual Eigenspace Disturbance (MED):

MED(A, B) =
√

1 − Prob(A, B) , (1)

Prob(A, B) = 1
d

∑
ij

Tr[PiQjPiQj] .

Intuition: commuting A and B have a common set of eigenstates, and a mea-

surement of e.g. A leaves the eigenspaces of B invariant. The violation of this

condition indicates their incompatibility.

MED is a measure of incompatibility: properties

1) symmetric and nonnegative, MED(A, B) = MED(B, A) ≥ 0 for any A and B,

2) faithful, MED(A, B) > 0 if and only if A and B are incompatible,

3) maximal for maximally complementary observables,

4) decreasing under coarse-graining,

5) a metric on von Neumann measurements,

6) robust to noise.

Experimental setup: Quantum SWITCH

Output of the quantum SWITCH:

SA,B(ρ ⊗ ω) =1
4
∑
ij

(
{Pi, Qj}ρ{Pi, Qj}† ⊗ ω + {Pi, Qj}ρ[Pi, Qj]† ⊗ ωZ

+ [Pi, Qj]ρ{Pi, Qj}† ⊗ Zω + [Pi, Qj]ρ[Pi, Qj]† ⊗ ZωZ
)

.

It can be seen as a quantum channel with Kraus operators

Sij = PiQj ⊗ |0〉〈0|︸ ︷︷ ︸
order B → A

+ QjPi ⊗ |1〉〈1|︸ ︷︷ ︸
order A → B

Effective estimation of MED of unknown observables

We choose ω = |+〉〈+| and perform a measurement of the control qubit in the

|±〉-basis. Then we obtain the outcome “−” with the probability:

p− = 1
4d

∑
ij

∥∥∥[Pi, Qj]
∥∥∥2

2
= 1

2

(
1 − 1

d

∑
ij

Tr[PiQjPiQj]
)

,

where ‖O‖2
2 := Tr[O†O].

We obtain our main result:

MED(A, B) =
√

2p−. (2)

Probabilistic implementation of the quantum SWITCH
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Step 1: initialization of the registers.

Step 2: probabilistic modelling of a CTC.

Step 3: measurement of the control qubit.

Performance

The minimum number of repetitions of the experiment needed to estimate MED

within an error ε with a probability 1 − δ is

n(ε, δ) = − 1
2ε2 log δ

2
, (3)

hence, the sample complexity of the estimation protocol is of O
(

1
ε2 log δ

2

)
.

Example: Consider A and B on MUBs

{|±〉} and {|0/1〉}. After running the

circuit for 40000 shots, we have ob-

tained

MED(A, B) =
√√√√ 1

1 + p(000)
p(001)

≈ 0.5,

as expected.

Clustering for projective measurements

Algorithm:

1) access to m black boxes associated to observables A1, . . . , Am,

2) estimation of MED for every pair of observables,

3) clustering of the observables k-medoids clustering with k-means++ style initial

seeding with MED as a distance.

We generate m = 100 random qubit observables, of the form Al = b
(l)
x X +b

(l)
y Y +

b
(l)
z Z , l ∈ {1, . . . , m}, with bl = (bl

x, bl
y, bl

z) ∈3 being the Bloch vector of the l-th
observable. The observables are naturally divided into 2 clusters, as expected.

Clustering for noisymeasurements

Projective measurement P(l) of each observable is replaced by a non-projective

measurement

N(l) = (1 − λl) P(l) + λl T(l),

with T(l) being a trivial measurement, and random noise probability λl = η Rl,

where we take noise level η = 0.25, 0.5, 0.75.
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